Tuesday, 19 January 2016

Materi Impuls dan Momentum


1.    Impuls
 
Anda telah mengetahui bahwa yang menyebabkan suatu benda diam menjadi bergerak adalah gaya. Misalnya: bola golf yang mula-mula diam akan bergerak ketika gaya pukulan stik golf anda bekerja pada bola golf tersebut (Gambar 1.1). Gaya pukulan stik golf anda pada bola golf termasuk gaya kontak yang bekerja hanya dalam waktu yang singkat. Gaya seperti ini disebut gaya impulsif. Perkalian antara gaya tersebut dengan selang waktu gaya itu bekerja pada benda disebut Impuls.











 
Jika gaya impulsif F, yang berubah terhadap selang waktu Dt, dapat anda gambarkan grafik F-t nya, maka luas arsir dalam selang waktu Dt, dimana Dt= t2 - t1, sama dengan luas arsir di bawah grafik F-t, dengan batas nilai dari t1 sampai dengan t2 (gambar 1.2).



Dari persamaan impuls dapat disimpulkan bahwa gaya dan selang waktu berbanding terbalik. Perhatikan tabel berikut:
1
2
4
8
2
Besarnya impuls yang dibentuk adalah sebesar 200 Ns, namun besar gaya dan selang waktu gaya tersebut bekerja pada benda bervariasi. Dari Tabel 1.1 tersebut, dapat dilihat bahwa jika waktu terjadinya tumbukan semakin besar (lama), gaya yang bekerja pada benda akan semakin kecil. Oleh karena itu, dapat disimpulkan bahwa waktu kontak antara gaya dan benda sangat mempengaruhi besar gaya yang bekerja pada benda saat terjadi tumbukan.
 Aplikasi Impuls dalam Keseharian dan Teknologi
2. Momentum




Perhatikan gambar 1.7. Jika kedua kendaraan tersebut bergerak dengan kecepatan sama, manakah yang lebih sukar anda hentikan: kendaraan yang bermassa besar atau kecil? Jika dua kendaraan bermassa sama (misalnya truck dengan truck, atau mobil dengan mobil) bergerak mendekati anda, manakah yang lebih sukar anda hentikan: kendaraan dengan kecepatan tinggi atau rendah?  Momentum didefinisikan sebagai ukuran kesukaran untuk memberhentikan suatu benda. Dari jawaban anda terhadap dua pernyataan di atas, momentum dirumuskan sebagai hasil kali massa dan kecepatan.
Momentum diperoleh dari hasil kali besaran skalar massa dan besaran vektor kecepatan, sehingga momentum termasuk besaran vektor. Arah momentum searah dengan arah kecepatan. Untuk momentum satu dimensi, arah momentum cukup ditampilkan dengan tanda positif atau negatif.



  3. Hukum Kekekalan Momentum



 
Suatu tumbukan selalu melibatkan sedikitnya dua benda. Misalnya benda itu adalah bola biliar A dan B (Gambar 1.8). Sesaat sebelum tumbukan, bola A bergerak mendatar ke kanan dengan momentum mAvA dan bola B bergerak mendatar ke kiri dengan momentum mBvB. Momentum sistem partikel sebelum tumbukan tentu saja sama dengan jumlah momentum bola A dan bola B sebelum tumbukan



 
Momentum sistem partikel sesuah tumbukan tentu saja sama dengan jumlah momentum bola A dan bola B sesudah tumbukan.



 
Hukum Kekekalan Momentum Linear  Dalam peristiwa tumbukan, momentum total sistem sesaat sebelum tumbukan sama dengan momentum total sistem sesaat sesudah tumbukan, asalkan tidak ada gaya luar yang bekerja pada sitem.
Formulasi hukum kekekalan momentum linear di atas dinyatakan oleh:2 setelah tumbukan!
4. Hubungan Impuls dan Momentum


 

Persamaan tersebut dapat kita nyatakan dengan kalimat berikut: 
5. Hukum II Newton dalam Bentuk Momentum  Perhatikan ulang persamaan . Dari persamaan inilah Newton menurunkan hukum keduanya dalam bentuk momentum sebagai berikut:
Untuk kasus yang paling sering kita jumpai dalam keseharian, yaitu massa benda tetap, persamaan diatas menjadi:
6. Tumbukan
Dalam kehidupan ini, banyak kita jumpai peristiwa tumbukan (perhatikan Gambar 1.10). Tumbukan dapat terjadi pada saat benda yang bergerak mengenai benda lain yang sedang bergerak atau diam. Pembahasan akan dibatasi mengenai tumbukan sentral lurus, yaitu tumbukan antara dua benda yang arah kecepatannya berimpit dengan garis hubung kedua pusat massa benda. Berdasarkan sifat kelentingan atau elastisitas benda yang bertumbukan, tumbukan dapat dibedakan menjadi tiga jenis, yaitu tumbukan lenting sempurna, tumbukan lenting sebagian, dan tumbukan tidak lenting sama sekali.
a.    Tumbukan Lenting Sempurna



Dua buah benda dikatakan mengalami tumbukan lenting sempurna jika pada tumbukan itu tidak terjadi kehilangan energi kinetik. Jadi, energi kinetik total kedua benda sebelum dan sesudah tumbukan adalah tetap. Pada tumbukan lenting sempurna berlaku hukum kekekalan momentum dan hukum kekekalan energi kinetik. Perhatikan Gambar 1.11. Dua buah benda memiliki massa masing-masing m1 dan m2 bergerak saling mendekati dengan kecepatan sebesar v1 dan v2 sepanjang lintasan yang lurus. Setelah keduanya bertumbukan masing-masing bergerak dengan kecepatan sebesar v'1 dan v'2dengan arah saling berlawanan.
Tumbukan tidak lenting sama sekali merupakan peristiwa tumbukan dua benda yang memiliki ciri setelah tumbukan kedua benda bersatu (perhatikan Gambar 1.13). Keadaan ini dapat digunakan bahasa lain, setelah bertumbukan; benda bersama-sama, benda bersarang dan benda bergabung. Kata-kata itu masih banyak lagi yang lain yang terpenting bahwa setelah bertumbukan benda menjadi satu. Jika tumbukannya seperti gambar 6.3 maka koefisien restitusinya akan nol, e = 0. Pada tumbukan ini berlaku hukum kekekalan momentum, tetapi energi kinetiknya tidak kekal. Pada tumbukan tidak lenting sama sekali, sesudah tumbukan kedua benda bersatu, sehingga kecepatan kedua benda sesudah tumbukan besarnya sama, yaitu v1' = v2' = v'.
Berdasarkan hukum kekekalan momentum maka kecepatan benda setelah tumbukan adalah sebagai berikut.
Tips dan Trik Pembahasan Soal

Reaksi: