Sunday, 1 March 2015

Materi Arus dan Tegangan Listrik Bolak-Balik


Sebelumnya kita telah mempelajari mengenai listrik arus searah, yaitu arus dan tegangan listrik yang besarnya dapat dianggap tetap dan mengalir dalam satu arah. Arus searah yang juga disebut direct current (DC) contohnya dihasilkan oleh baterai. Pada modul ini akan dibahas mengenai arus bolak-balik atau alternating current (AC), yaitu arus dan tegangan listrik yang
besarnya berubah terhadap waktu dan dapat mengalir dalam dua arah. Arus bolak-balik digunakan secara luas untuk penerangan maupun peralatan elektronik seperti televisi, radio, oven microwave, dan lain-lain. Di Indonesia, listrik arus bolak-balik disediakan oleh PLN. Pada modul ini, Anda juga akan mempelajari beberapa komponen-komponen listrik, diantaranya resistor, induktor, dan kapasitor, serta rangkaian yang menggunakan komponen-komponen listrik tersebut.

electric-generators
ac_generator

Generator AC sederhana terdiri dari sebuah kumparan yang diputar dalam suatu medan magnetik seperti gambar yang ditunjukkan gambar di atas. Untuk melihat bagaimana arus dibangkitkan oleh generator, perhatikan dua sisi vertikal dari kumparan pada gambar tersebut. Agar kumparan berputar berlawanan arah jarum jam maka sisi vertikal kiri harus mengalami gaya F ke depan dan sisi vertikal kanan harus mengalami gaya F ke belakang. Sesuai dengan kaidah telapak tangan untuk gaya magnetik (gaya Lorentz), arus I pada sisi vertikal kiri haruslah ke atas, dan arus I pada sisi vertikal kanan haruslah ke bawah, seperti ditunjukkan pada gambar tersebut. Arah gaya F pada gambar searah dengan arah normal bidang kumparan n. dengan demikian sudut antara arah induksi magnetik B dan arah normal bidang n adalah θ. Dalam generator, perputaran kumparan menyebabkan sudut θ selalu berubah, dan ini menyebabkan fluks magnetik (Ф), yang menerobos bidang kumparan juga berubah. Pada ujung-ujung kawat loop dibangkitkan ggl induksi (ε), yang dapat dihitung dengan persamaan:
ε=-NBA (d cosθ)/dt



Jadi, tegangan maksimumnya 4 volt.
Frekuensi getarnya



Pada dasarnya, komponen-komponen rangkaian listrik menunjukkan karakteristik yang berbeda ketika dihubungkan dengan sumber tegangan searah dan ketika dihubungkan dengan sumber tegangan bolak-balik. Karena itu, karakteristik rangkaian arus searah berbeda dengan karakteristik rangkaian arus bolak-balik dan salah satu perbedaan tersebut berkaitan dengan fase antara tegangan dan arus.
Pada umumnya, semua rangkaian listrik mempunyai hambatan, kapasitas, dan induktansi meskipun pada rangkaian tersebut tidak terdapat resistor, kapasitor, dan induktor. Akan tetapi nilai hambatan, kapasitas, dan induktansi tersebut tergantung pada jenis komponen yang terdapat dalam rangkaian, dan mungkin pada keadaan tertentu nilai hambatan, kapasitas, dan induktansi tersebut dapat diabaikan, sedangkan pada keadaan lain mungkin tidak dapat diabaikan. Secara teoritis dapat dianggap bahwa rangkaian listrik terdiri dari rangkaian resistif, rangkaian induktif, dan rangkaian kapasitif

RANGKAIAN RESISTIF
Rangkaian resistif merupakan rangkaian yang hanya terdiri dari sumber tegangan (V) dengan resistor yang mempunyai hambatan R dan nilai kapasitas (C) maupun induktansi (L) rangkaian tersebut diabaikan. Perhatikan sebuah rangkaian arus bolak-balik yang terdiri dari sebuah resistor dan generator AC seperti gambar berikut ini:
Karena rangkaian resistif dianggap tidak mempunyai induktansi dan kapasitas, maka rangkaian resistif tidak dipengaruhi oleh perubahan medan magnet di sekitarnya. Berdasarkan hal tersebut, maka pada rangkaian resistif, arus dan tegangan bolak-balik mempunyai fase yang sama atau beda fasenya nol.





Untuk menentukan hubungan VR, VL, dan VC digunakan diagram fasor. Perhatikan bahwa karena ketiga elemen berhubungan seri, maka arus yang mengalir melalui semua elemen sama besar, yaitu I=I_m sin⁡ωt. Dengan kata lain arus bolak-balik di semua titik pada rangkaian seri RLC memiliki nilai maksimum dan fase yang sama. Akan tetapi tegangan pada masing-masing elemen akan memiliki nilai dan fase yang berbeda. Tegangan pada resistor VR sefase dengan arus I, tegangan pada induktor VL mendahului arus π/2 rad atau 90o, dan tegangan pada kapasitor tertinggal dari arus π/2 rad atau 90o. Dengan demikian dapat ditulis:
V_R=I_m R sin⁡ωt= V_mR sin⁡ωt
V_L=I_m X_L 〖sin 〗⁡〖(ωt〗+〖90〗^o)= V_mL sin⁡〖 (ωt〗+〖90〗^o)
V_C=I_m X_C sin⁡〖 (ωt〗-〖90〗^o)= V_mC sin⁡〖 (ωt〗-〖90〗^o)



Saat terjadinya resonansi,

Oleh karena , maka diperoleh frekuensi resonansi

Dan dalam rangkaian R-L-C seri adalah
c
Persamaan di atas disebut juga sebagai daya semu. Adapun daya yang sesungguhnya atau daya rata-rata adalah

Keterangan
 = beda fase antara arus dan tegangan
Cos  = faktor daya
Impedansi rangkaian
XL = .L = 100 . 0,6 = 60 Ω

Sehingga:
Sehingga:

Jadi besar daya rata-rata yang diserap adalah 540 W.

TRANSFORMATOR
transformator

trafo

Transformator atau trafo terdiri dari pasangan kumparan primer dan sekunder yang terpisah dan dililitkan pada inti besi lunak. Kumparan primer berfungsi sebagai input dan kumparan sekunder berfungsi sebagai output. Prinsip dasar cara kerja transformator adalah hukum induksi Faraday. Kumparan primer dihubungkan ke suatu sumber arus bolak-balik yang besar arus listriknya senantiasa berubah terhadap waktu. Arus pada kumparan primer ini bekerja seolah-oleh mengalirkan atau memutuskan arus searah secara berulang-ulang sehingga terjadi perubahan garis-garis gaya magnet yang memotong kumparan sekunder. Akibatnya, timbul GGL induksi dalam kumparan sekunder yang berfungsi sebagai output dengan mengalirkan arus listrik induksi. Dengan menentukan jumlah lilitan yang
sesuai untuk tiap kumparan, dapat dihasilkan GGL kumparan sekunder yang berbeda dengan GGL pada kumparan primer.
Hubungan antara tegangan dengan jumlah lilitan kumparan pada sebuah transformator dapat ditulis secara matematis sebagai berikut.
dengan:
Vs = tegangan sekunder (volt)
Vp = tegangan primer (volt)
Ns = lilitan sekunder (lilitan)
Np = lilitan primer (lilitan)

Jadi, tegangan pada kumparan sekunder adalah 220 V.

Jadi, arus listrik yang melewati kumparan primer adalah 0,182 A.

Efisiensi Transformator
Inti transformator terbuat dari pelat-pelat besi. Ketika suatu tegangan bolak-balik dihubungkan pada transformator maka akan dihasilkan garis-garis gaya magnet yang selalu berubah. Hal ini dapat menyebabkan timbulnya arus pusat pada inti tarnsformator. Inti transformator terbuat dari besi yang bersifat sebagai penghantar yang memiliki hambatan listrik sehingga timbul kehilangan energi dalam bentuk kalor. Selain itu, kumparan primer dan sekunder yang terbuat dari kawat tembaga dan bersifat sebagai penghantar dengan nilai hambatan listrik tertentu juga menimbulkan kehilangan energi dalam bentuk kalor. Dalam transformator selalu timbul kalor sehingga energi listrik yang keluar dari transformator selalu lebih kecil daripada energi listrik yang masuk ke transformator. Sebagian energi listrik itu berubah menjadi kalor. Keadaan ini merupakan sesuatu yang tidak dapat dihindarkan.
Efisiensi transformator didefinisikan sebagai perbandingan antara daya listrik yang keluar dari transformator dengan daya listrik yang masuk ke transformator.
Transformator adalah alat atau mesin yang sangat efisien. Efisiensi transformator dapat mencapai 99%.

Reaksi: